## A NEW, FACILE SYNTHESIS OF THE 3-METHYL-2(5H)-FURANOID STRUCTURAL UNIT FROM KETONES

## Seppo I. Pennanen

Department of Chemistry, Helsinki University of Technology, 02150, Otaniemi, Finland.

The 3-methyl-2(5H)-furanced structural unit is prepared from ketones via 1,4-rearrangement of siloxyalkenes on peroxidation and via exetene rearrangement of 1-diethylamino-propyne in 53-58% overall yield.

The synthesis of the title unit (1) from  $\alpha$ -epoxyketones has been reported from this laboratory. Because the molety 1 together with its readily accessible derivatives  $2^2$  and  $3^{3,4}$  occur frequently in natural products (especially sesquiterpenes), the method can be used as a part of total synthesis of e.g. eremophilenolide<sup>5</sup>.

The usual intermediates in the syntheses of sesquiterpenes are various kinds of cyclohexanone systems which may be transformed to the corresponding  $\alpha$ -epoxyketones via phenylselenenylation, selenoxide fragmentation and alkaline hydrogen peroxide oxidation. It appeared probable that  $\alpha$ -siloxyketones (from 1,4-rearrangement of siloxyalkenes on peroxidation, e.g.,  $\underline{4}$  to  $\underline{6}$  in 76% yield) might be more convenient intermediates than  $\alpha$ -epoxyketones, especially since siloxyalkenes are readily prepared from ketones in high yields under kinetically (97%) or thermodynamically (84%) controlled conditions (e.g.  $\underline{4}$  or  $\underline{5}$ ).

The treatment of siloxyketone  $\underline{6}$  with 1-diethylaminopropyne<sup>9</sup> and dry MgBr<sub>2</sub> in dry ether<sup>1</sup> gave after oxetene rearrangement the siloxyamide  $\underline{7}$  in 78% yield which upon acidic treatment in acetone underwent ring closure giving the lactone  $\underline{8}$  in 93% yield.

The advantage of this procedure for preparing the unit  $\underline{1}$  is its simplicity and the fact that all the reaction steps starting from a ketone can be performed successively without purification of the intermediates (this may decrease the overall yield). Thus, this method appears highly convenient for the conversion of ketones into compounds  $\underline{1}$  (overall yields): 2-methylcyclohexanone  $\rightarrow \underline{1}$  (i.e. 8), 56%: cyclohexanone  $\rightarrow \underline{1}$ , 58%: 2-octalone (cis/trans)  $\rightarrow \underline{1}$ , 53%.

## A typical procedure (without isolation of intermediates) $^{10}$ :

2-Methylcyclohexanone (300 mg) was silylated with the Me\_3SiCl / LDA / THF system.  $^8$  Dry hexane was added into the reaction mixture and the precipitated LiCl was filtered. The solvent was evaporated and the remaining viscous oil was dissolved in dry  $\mathrm{CH_2Cl_2}$  (10 ml). The peroxidation with MCPBA (560 mg; 1.2 x equiv.) was performed at  $0^{\circ}\mathrm{C}$ . After addition of dry hexane (40 ml; to precipitate acidic compounds) the solution was filtered through neutral alumina and the solvent was evaporated. Dry ether (10 ml) was added together with 500 µl (ca 1.3 x equiv.) of 1-diethylamino-propyne. Then 700 mg (ca 1.3 x equiv.) of dry MgBr\_2 was added into vigorously stirred mixture under argon. The stirring was continued at ambient temperature for 2 hr during which time a very viscous sirup developed on the wall of the reaction flask. Saturated NaHCO\_3 solution was added and the ethereal layer was separated and evaporated. The residue was dissolved in 20 ml of acetone. A few drops of dil.  $\mathrm{H_2SO_4}$  or cons. HCl was added and the mixture was first stirred at room temperature for 2 hr and then refluxed for 3-4 hr. After cooling NaHCO\_3 (200 - 300 mg) was added, the solids filtered and acetone evaporated. The residue was chromatographed on preparative silica gel TLC-plates (1:9 EtoAc/CHCl\_3 as eluant) yielding the furanone 8 in 56% overall yield from 2-methylcyclohexanone.

## REFERENCES AND FOOTNOTES

- 1. Pennanen S. I., Tetrahedron Lett., 1977, 2631.
- 2. Yamahawa K. and Nishitani K., <u>Chem. Pharm. Bull.</u> (Japan), <u>24</u>, 2810 (1976).
- 3. Hikino H. and Konno C., Heterocycles, 4, 817 (1976).
- 4. Minato H. and Nagasaki T., J. Chem. Soc. (C), 1966, 377.
- 5. Pennanen S. I., Acta Chem. Scand. To be published.
- 6. Clive D.L.J., Tetrahedron, 34, 1049 (1978).
- 7. Brook A.G. and Macrea D.M., J. Organometal. Chem., 77, C 19 (1974).
- Fleming I. and Paterson I., Synthesis, 1979, 736.
- 9. Commercially available.
- 10. In an other run all the intermediates (all viscous oils) were purified and identified by spectral data. Yields are unoptimized.

(Received in UK 10 December 1979)